Earlier
this year the blog featured articles on herbs effective against Gram-positive
and Gram-negative bacteria.  And I
totally planned to run an article on herbs noted for their efficacy against
viruses.  Something got in the way of
that.  I have no idea.  Maybe the garden

Anyway,
time to rectify that.  And perhaps you
can work some of these antiviral herbs into your landscape when you begin
armchair gardening next month. 
Personally, I’m hoping the Japanese honeysuckle I planted in May
survives the winter and spreads.  I’d
love to take cuttings and cover our property with them.  I definitely want more lemon balm, which I
probably need to move from its current location as it doesn’t seem incredibly
happy there.  More forsythia would be
good. 

Most of
these herbs are effective against the common viruses like influenza, herpes,
and RSV.  Some deal not only with the
everyday stuff, but more importantly with nasties like mumps and hepatitis. 

I’ve placed these in descending
order, with the most powerful antivirals at the top of the list.  Taking a
fresh look at licorice this morning, for example, I realize that I need order
some more.  As it’s a USDA hardiness zone
7 plant, I’m not going to be able to grow my own here, and Becky’s been depleting
my supply.  With efficacy against
smallpox, polio, and measles, I don’t want to start TEOTWAWKI without it.  You’ll see elderberry much farther down the
list and wonder why.  It is indeed an
effective antiviral, especially for influenza and other upper respiratory
infections. However, it’s also easy to market. 
Anything with berry in the name is going to be easy to sell.  Contrast that with isatis and its reputation
for a truly horrific assault on the taste buds. 


Licorice

o  
Adenovirus type 3[1]

o  
Coxsackie B3[2]

o  
Cytomegalovirus[3]
[4]

o  
Dengue[5]

o  
Ebola[6]

o  
Enterovirus D68[7]

o  
Enterovirus 71[8]
[9]

o  
Epstein-Barr[10]
[11]

o  
Hepatitis A, B, C, E, and probably D[12]

§  B and C
only[13]

o  
Herpes simplex virus 1 and 2[14]
[15]

o  
HIV-1[16] [17]

o  
Influenza A (especially H1N1, H2N2, H5N1, H9N2)[18] [19]

o  
Japanese encephalitis virus[20]
[21]

o  
Measles[22]

o  
Polio[23]

o  
Respiratory syncytial virus (RSV)[24] [25]

o  
Rotavirus[26]

o  
SARS-related coronavirus[27]
[28]

o  
Tick-borne encephalitis[29]

o  
Vaccinia (smallpox)[30]
[31]

o  
Varicella zoster (chickenpox and shingles)[32] [33]

o  
Viral pneumonia[34]

o  
West Nile[35]

o  
Yellow fever[36]

Isatis

o  
Adenoviruses[37]

o  
Avian infectious bronchitis[38]

o  
Coxsackie (B2, B3, B4)[39]
[40]

o  
Cytomegalovirus[41]
[42]

o  
Epstein-Barr[43]

o  
Hemorrhagic fever with renal syndrome[44]

o  
Hepatitis B[45]
[46]

o  
Herpes simplex[47]
[48] [49]

o  
Human adenovirus type 3[50]

o  
Influenza A and B (H1N1, H6N2, H7N3, H9N2)[51] [52]

o  
Japanese encephalitis[53]

o  
Measles[54]

o  
Meningitis (enterococcal)[55]
[56]

o  
Mumps[57] [58]

o  
Respiratory syncytial virus (RSV)[59]

o  
Rubella[60]

o  
SARS[61] [62] [63] [64]

o  
Varicella (chicken pox/shingles)[65]

Lomatium

o  
Cytomegalovirus[66]

o  
Epstein-Barr[67]

o  
Hepatitis C[68]

o  
HIV[69]

o  
Influenza[70]

o  
Pneumonia[71]

o  
Rotavirus[72]

o  
SARS[73]

o  
Viral encephalitis[74]

o  
West Nile[75]

Japanese honeysuckle

o  
Cytomegalovirus[76]

o  
Enterovirus 71[77]

o  
Human immunodeficiency virus (HIV)[78] [79]

o  
Herpes simplex virus[80]

o  
Polio[81]

o  
Respiratory syncytial virus (RSV)[82]

o  
Rubella[83]

o  
SARS[84]

o  
Varicella zoster (chickenpox, shingles)[85] [86]

Ginger

o  
Cytomegalovirus[87]
[88]

o  
Epstein-Barr[89]

o  
Hepatitis C[90] [91]

o  
Herpes simplex 1 and 2[92]

o  
HIV-1[93]

o  
Influenza A[94]
[95]

o  
Polio (mildly)[96]

o  
Rhinovirus (colds)[97]
[98]

o  
Vaccinia[99]

Echinacea

o  
Coronavirus, including MERS and SARS[100]

§  E.
purpurea[101]

o  
Covid-19[102]

o  
Herpes simplex 1 and 2

§  E.
purpurea[103]

§  Infusion[104]

o  
HIV

§  E.
purpurea[105]

o  
Influenza

§  E.
purpurea extracts[106] [107]

o  
Japanese encephalitis virus

§  E.
angustifolia[108]

o  
Respiratory syncytial virus (RSV)

§  E.
purpurea[109]

Lemon balm

o  
Chickenpox[110]

o  
Enterovirus-71[111]

§  Tincture[112]

o  
HIV[113]

o  
Herpes simplex 1 and 2[114]
[115]

o  
Influenza

§  H1N1[116]

o  
SARS[117]

o  
Varicella zoster (shingles)[118]

Japanese barberry

o  
Cytomegalovirus[119]

o  
Dengue[120]

o  
Hepatitis B[121]

o  
Herpes simplex 1 and 2[122]

o  
West Nile virus[123]

o  
Yellow fever virus[124]

Elderberry

o  
Influenza A (H1N1, H5N1, H3N2) (berries, flowers)[125]

o  
Influenza B (berries, flowers)[126]

o  
Herpes simplex (berries)[127]

o  
HIV (berries)[128]

o  
Respiratory syncytial virus (RSV, stem bark)[129]

Forsythia

o  
Cytomegalovirus (CMV)[130]

o  
Enterovirus 71[131]

o  
Influenza A[132]
[133]

§  H1N1[134]

o  
Respiratory syncytial virus (RSV)[135] [136]

o  
SARS[137]
[138]



[1] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[2] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[3] Stephen Harrod Buhner, Herbal Antivirals, 2013, 219.

[4] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 221.

[5] Stephen Harrod Buhner, Herbal Antivirals, 2013, 105,
218.

[6] Stephen Harrod Buhner, Herbal Antivirals, 2013, 415.

[7] Stephen Harrod Buhner, Herbal Antivirals, 2013, 111.

[8] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[9] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[10] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[11] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[12] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[13] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[14] Stephen Harrod Buhner, Herbal Antivirals, 2013,
113-116.

[15] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[16] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[17] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[18] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[19] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[20] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[21] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[22] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[23] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[24] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[25] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[26] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[27] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[28] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[29] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[30] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[31] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[32] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[33] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 222.

[34] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[35] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[36] Stephen Harrod Buhner, Herbal Antivirals, 2013, 218.

[37] Stephen Harrod Buhner, Herbal Antivirals, 2013, 57.

[38] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[39] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200,
207.

[40] Qiong Chen, et al., Isatis indigotica: a review of
phytochemistry, pharmacological activities and clinical applications, Journal
of Pharmacy and Pharmacology, 29 March 2021,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249990/ (accessed 20 March 2023).

[41] Stephen Harrod Buhner, Herbal Antivirals, 2013, 105,
200.

[42] Qiong Chen, et al., Isatis indigotica: a review of
phytochemistry, pharmacological activities and clinical applications, Journal
of Pharmacy and Pharmacology, 29 March 2021,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249990/ (accessed 20 March 2023).

[43] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[44] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[45] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[46] Qiong Chen, et al., Isatis indigotica: a review of
phytochemistry, pharmacological activities and clinical applications, Journal
of Pharmacy and Pharmacology, 29 March 2021,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249990/ (accessed 20 March 2023).

[47] Stephen Harrod Buhner, Herbal Antivirals, 2013,
113-14, 116, 200.

[48] Qiong Chen, et al., Isatis indigotica: a review of
phytochemistry, pharmacological activities and clinical applications, Journal
of Pharmacy and Pharmacology, 29 March 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249990/
(accessed 20 March 2023).

[49] Jasmine Speranza, et al., Isatis tinctoria L. (woad):
a review of its botany, ethnobotanical uses, phytochemistry, biological
activities, and biotechnological studies, Plants (Basel), March 2020, Vol 9 No
3, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154893/ (accessed 20 March
2023).

[50] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[51] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[52] Qiong Chen, et al., Isatis indigotica: a review of
phytochemistry, pharmacological activities and clinical applications, Journal
of Pharmacy and Pharmacology, 29 March 2021,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249990/ (accessed 20 March 2023).

[53] Shu-Jen Chang, et al., Antiviral activity of Isatis
indigotica extract and its derived indirubin against Japanese encephalitis
virus, Evidence Based Complementary and Alternative Medicine, 17 July 2012,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405817/ (accessed 20 March 2023).

[54] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[55] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 50.

[56] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 45.

[57] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[58] Qiong Chen, et al., Isatis indigotica: a review of
phytochemistry, pharmacological activities and clinical applications, Journal
of Pharmacy and Pharmacology, 29 March 2021,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249990/ (accessed 20 March 2023).

[59] Stephen Harrod Buhner, Herbal Antivirals, 2013, 58,
200.

[60] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[61] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[62] Shih-Ling Hsuan, et al., The cytotoxicity to leukemia
cells and antiviral effects of Isatis indigotica extracts on pseudorabies
virus, Journal of Ethnopharmacology, 4 May 2009, Vol 123 No 1,  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126793/ (accessed 20 March
2023)

[63] Cheng-Wen Lin, et al., Anti-SARS coronavirus 3C-like
protease effects of Isatis indigotica root and plant-derived phenolic
compounds, Antiviral Research, October 2005, Vol 68 No 1,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114321/ (accessed 20 March 2023).

[64] Jasmine Speranza, et al., Isatis tinctoria L. (woad):
a review of its botany, ethnobotanical uses, phytochemistry, biological
activities, and biotechnological studies, Plants (Basel), March 2020, Vol 9 No
3, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154893/ (accessed 20 March
2023).

[65] Stephen Harrod Buhner, Herbal Antivirals, 2013, 200.

[66] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[67] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[68] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[69] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[70] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[71] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[72] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[73] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[74] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[75] Stephen Harrod Buhner, Herbal Antivirals, 2013, 235.

[76] Xiaofei Shang, et al., Lonicera japonica Thunb.:
Ethnopharmacology, Phytochemistry, and Pharmacology of an Important Traditional
Chinese Medicine, Journal of Ethnopharmacology, 31 October 2011, Vol 138 No 1,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127058/ (accessed 20 March 2023).

[77] Stephen Harrod Buhner, Herbal Antivirals, 2013, 108.

[78] Xiaofei Shang, et al., Lonicera japonica Thunb.:
Ethnopharmacology, Phytochemistry, and Pharmacology of an Important Traditional
Chinese Medicine, Journal of Ethnopharmacology, 31 October 2011, Vol 138 No 1,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127058/ (accessed 20 March 2023).

[79] S Zheng, et
al.,  Systematic review of Lonicerae Japonicae
Flos: A significant food and traditional Chinese medicine Frontiers in
Pharmacology, 19 October 2022, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626961/
(accessed 18 May 2023).

[80] Xiaofei Shang, et al., Lonicera japonica Thunb.:
Ethnopharmacology, Phytochemistry, and Pharmacology of an Important Traditional
Chinese Medicine, Journal of Ethnopharmacology, 31 October 2011, Vol 138 No 1,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127058/ (accessed 20 March 2023).

[81] S Zheng, et
al.,  Systematic review of Lonicerae
Japonicae Flos: A significant food and traditional Chinese medicine Frontiers
in Pharmacology, 19 October 2022, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626961/
(accessed 18 May 2023).

[82] Xiaofei Shang, et al., Lonicera japonica Thunb.:
Ethnopharmacology, Phytochemistry, and Pharmacology of an Important Traditional
Chinese Medicine, Journal of Ethnopharmacology, 31 October 2011, Vol 138 No 1,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127058/ (accessed 20 March 2023).

[83] S Zheng, et al.,  Systematic review of Lonicerae Japonicae
Flos: A significant food and traditional Chinese medicine Frontiers in
Pharmacology, 19 October 2022, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626961/
(accessed 18 May 2023).

[84] Stephen Harrod Buhner, Herbal Antivirals, 2013, 56.

[85] Stephen Harrod Buhner, Herbal Antivirals, 2013, 117.

[86] S Zheng, et
al.,  Systematic review of Lonicerae
Japonicae Flos: A significant food and traditional Chinese medicine Frontiers
in Pharmacology, 19 October 2022, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626961/
(accessed 18 May 2023).

[87] Stephen Harrod Buhner, Herbal Antivirals, 2013, 172.

[88] Stephen Harrod
Buhner, Herbal Antibiotics, 2012, 231.

[89] Stephen Harrod Buhner, Herbal Antivirals, 2013, 172.

[90] Stephen Harrod Buhner, Herbal Antivirals, 2013, 172.

[91] Stephen Harrod
Buhner, Herbal Antibiotics, 2012, 231.

[92] Stephen Harrod Buhner, Herbal Antivirals, 2013, 172.

[93] Stephen Harrod
Buhner, Herbal Antibiotics, 2012, 231.

[94] Stephen Harrod Buhner, Herbal Antivirals, 2013, 172.

[95] Stephen Harrod
Buhner, Herbal Antibiotics, 2012, 231.

[96] Stephen Harrod Buhner, Herbal Antivirals, 2013, 172.

[97] Stephen Harrod Buhner, Herbal Antivirals, 2013, 172.

[98] Stephen Harrod
Buhner, Herbal Antibiotics, 2012, 231.

[99] Stephen Harrod Buhner, Herbal Antivirals, 2013, 172.

[100] J Signer, et
al.,  In vitro virucidal activity of
Echinaforce®, an Echinacea purpurea preparation, against coronaviruses,
including common cold coronavirus 229E and SARS-CoV-2, Virology Journal, 9
September 2020, Vol 17 No 1, https://pubmed.ncbi.nlm.nih.gov/32907596/
(accessed 9 May 2023).

[101] JB Hudson,
Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in
infectious diseases, Journal of Biomedicine and Biotechnology, 2012, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205674/
(accessed 11 May 2023).

[102] LH Bajrai LH, et
al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2
by Hypericum perforatum and Echinacea, Scientific Reports, 15 December 2022, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754313/  (accessed 10 May 2023).

[103] JB Hudson,
Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in
infectious diseases, Journal of Biomedicine and Biotechnology, 2012, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205674/
(accessed 11 May 2023).

[104] C. Burlou-Nagy,
et al.,  Echinacea purpurea (L.)
Moench: Biological and Pharmacological Properties. A Review. Plants (Basel), 5
May 2022, Vol 11 No 9, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102300/
(accessed 9 May 2023).

[105] DF Birt, et al.,
Echinacea in infection, American Journal of Clinical Nutrition, February 2008,
Vol 87 No 2, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2262947/ (accessed 10
May 2023).

[106] JB Hudson,
Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in
infectious diseases, Journal of Biomedicine and Biotechnology, 2012, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205674/
(accessed 11 May 2023).

[107] JB Hudson,
Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious
diseases, Journal of Biomedicine and Biotechnology, 2012, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205674/
(accessed 11 May 2023).

[108] P Yadav, et al.,
Discovery of Small Molecules from Echinacea angustifolia Targeting
RNA-Dependent RNA Polymerase of Japanese Encephalitis Virus, Life (Basel), 24
June 2022, Vol 12 No 7, https://pubmed.ncbi.nlm.nih.gov/35888042/ (accessed 10
May 2023).

[109] JB Hudson,
Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in
infectious diseases, Journal of Biomedicine and Biotechnology, 2012, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205674/
(accessed 11 May 2023).

[111] Stephen Harrod Buhner, Herbal Antivirals, 2013, 108.

[112] Zam Wissam, et al., An updated review on the properties of
melissa officinalis l.: not exclusively anti-anxiety, Frontiers in Bioscience
(Scholar Edition), 2022, Vol 14 No 2, https://pubmed.ncbi.nlm.nih.gov/35730441/
(accessed 2 June 2023).

[113] A Behzadi, et
al., Antiviral Potential of Melissa officinalis L.: A Literature Review,
Nutrition and Metabolic Insights, 12 January 2023, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841880/
(accessed 2 June 2023).

[114] Stephen Harrod Buhner, Herbal Antivirals, 2013, 113.

[115] A Behzadi, et
al., Antiviral Potential of Melissa officinalis L.: A Literature Review,
Nutrition and Metabolic Insights, 12 January 2023, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841880/
(accessed 2 June 2023).

[116] Zam Wissam, et al., An updated review on the properties of
melissa officinalis l.: not exclusively anti-anxiety, Frontiers in Bioscience
(Scholar Edition), 2022, Vol 14 No 2, https://pubmed.ncbi.nlm.nih.gov/35730441/
(accessed 2 June 2023).

[117] A Behzadi, et
al., Antiviral potential of melissa officinalis l.: a literature review,
nutrition and metabolic insights, 12 January 2023, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841880/
(accessed 2 June 2023).

[118] Stephen Harrod Buhner, Herbal Antivirals, 2013, 117.

[119] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 164.

[120] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 164.

[121] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 164.

[122] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 164.

[123] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 164.

[124] Stephen Harrod Buhner, Herbal Antibiotics, 2012, 164.

[125] Stephen Harrod Buhner, Herbal Antivirals, 2013, 157.

[126] Stephen Harrod Buhner, Herbal Antivirals, 2013, 157.

[127] Stephen Harrod Buhner, Herbal Antivirals, 2013, 157.

[128] Stephen Harrod Buhner, Herbal Antivirals, 2013, 157.

[129] Stephen Harrod Buhner, Herbal Antivirals, 2013, 157.

[130] Stephen Harrod Buhner, Herbal Antivirals, 2013, 105.

[131] Stephen Harrod Buhner, Herbal Antivirals, 2013, 108.

[132] Stephen Harrod Buhner, Herbal Antivirals, 2013, 245.

[133] A Law, et al.,
Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit
against influenza A virus through reduction of viral M1 protein, Journal of
Ethnopharmacology, Vol 209, 2017, https://www.sciencedirect.com/science/article/abs/pii/S0378874117310942
(accesed 12 May 2023).

[134] Z Dong, et al.,
Forsythiae Fructus: A Review on its Phytochemistry, Quality Control,
Pharmacology and Pharmacokinetics, Molecules, 4 September 2017, Vol 22 No 9, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151565/
(accesed 13 May 2023).

[135] Stephen Harrod Buhner, Herbal Antivirals, 2013, 245.

[136] Z Dong, et al.,
Forsythiae Fructus: A Review on its Phytochemistry, Quality Control,
Pharmacology and Pharmacokinetics, Molecules, 4 September 2017, Vol 22 No 9, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151565/
(accesed 13 May 2023).

[137] Stephen Harrod Buhner, Herbal Antivirals, 2013, 56.

[138] F. Oesch, et
al., Toxicity as prime selection criterion among SARS-active herbal
medications, Phytomedicine, Volume 85, 2021, https://www.sciencedirect.com/science/article/pii/S0944711321000180
(accessed 11 May 2023).